Path integral solution of two potentials related to the $\operatorname{SO}(2,1)$ dynamical algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L279
(http://iopscience.iop.org/0305-4470/26/5/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Path integral solution of two potentials related to the $\mathrm{SO}(2,1)$ dynamical algebra

Christian Grosche

International School for Advanced Studies, SISSA, Strada Costiera 11, 34014 Trieste, Miramare, Italy

Received 16 June 1992

$$
\text { Abstract. Two classes of generalized Coulomb potentials related to the } S O(2,1) \text { dynamical }
$$ algebra are rigorously solved by path integration in terms of parabolic coordinates.

1. Introduction

In this paper I want to discuss two classes of potentials related to the $\mathrm{SO}(2,1)$ dynamical symmetry. They are
(i) $\left(r=\sqrt{x^{2}+y^{2}+z^{2}}\right)$

$$
\begin{align*}
V_{1}(x, y, z)= & -\frac{\alpha}{r}+\frac{\hbar^{2}}{2 m}\left(\frac{b_{1}+b_{2}}{x^{2}+y^{2}}+\frac{\left(b_{1}-b_{2}\right) z}{\left(x^{2}+y^{2}\right) r}\right) \\
& +\frac{m}{4}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)-\frac{m}{4}\left(\omega_{1}^{2}-\omega_{2}^{2}\right) \frac{z}{r} \\
= & \frac{1}{\xi^{2}+\eta^{2}}\left(\frac{m}{2} \omega_{1}^{2} \xi^{2}+\frac{\hbar^{2} b_{1}}{m \xi^{2}}+\frac{m}{2} \omega_{2}^{2} \eta^{2}+\frac{\hbar^{2} b_{2}}{m \eta^{2}}-2 \alpha\right)=V_{1}(\xi, \eta) \tag{1}
\end{align*}
$$

with parabolic coordinates $x=\xi \eta \cos \phi, y=\xi \eta \sin \phi$ and $z=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right)$, where $0 \leqslant \xi, \eta<\infty, 0 \leqslant \phi \leqslant 2 \pi$.
(ii) $\left(\rho=\sqrt{x^{2}+y^{2}}\right)$

$$
\begin{align*}
V_{2}(x, y, z)= & -\frac{\alpha}{\rho}+\frac{\hbar^{2}}{2 m}\left(\frac{\beta-\frac{1}{4}}{y^{2}}-\frac{\gamma x}{y^{2} \rho}+\frac{\delta^{2}-\frac{1}{4}}{z^{2}}\right)+\frac{m}{16}\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \\
& +\frac{m}{16}\left(\omega_{1}^{2}-\omega_{2}^{2}\right) \frac{x}{\rho}+\frac{m}{2} \omega_{3}^{2} z^{2} \\
= & \frac{1}{4\left(u^{2}+v^{2}\right)}\left[-4 \alpha+\frac{\hbar^{2}}{2 m}\left(\frac{\beta+\gamma-\frac{1}{4}}{u^{2}}+\frac{\beta-\gamma-\frac{1}{4}}{v^{2}}\right)\right. \\
& \left.+\frac{m}{2}\left(\omega_{1}^{2} u^{2}+\omega_{2}^{2} v^{2}\right)\right]+\frac{m}{2} \omega_{3}^{2} z^{2}+\frac{\hbar^{2}}{2 m} \frac{\delta^{2}-\frac{1}{4}}{z^{2}}=V_{2}(u, v, z) \tag{2}
\end{align*}
$$

with $x=u^{2}-v^{2}, y=2 u v,-\infty<u, v<\infty, z>0$. Note that due to the strong singularity at $y=0$, the regions $(-\infty<y<0)$ and ($0<y<\infty$) are decoupled such that it is sufficient to consider only the domain $0<y, z<\infty, x \in \mathbb{R}$, respectively, $0<u, v, z<\infty$. The corresponding classical Lagrangians for the two potentials in two-and three-dimensional parabolic coordinates, respectively, have the form
$\mathcal{L}_{1}(\xi, \eta, \phi, \dot{\xi}, \dot{\eta}, \dot{\phi})=\frac{1}{2} m\left[\left(\xi^{2}+\eta^{2}\right)\left(\dot{\xi}^{2}+\dot{\eta}^{2}\right)+\xi^{2} \eta^{2} \dot{\phi}^{2}\right]-V_{1}(\xi, \eta)$
$\mathcal{L}_{2}(u, v, z, \dot{u}, \dot{v}, \dot{z})=\frac{1}{2} m\left[4\left(u^{2}+v^{2}\right)\left(\dot{u}^{2}+\dot{v}^{2}\right)+\dot{z}^{2}\right]-V_{2}(u, v, z)$.
V_{1} can be seen as a highly distorted spherical Coulomb field with an additional double ring well, and V_{2} as a similar highly distorted cylindrical Coulomb field, respectively. These two highly singular non-isotropic potentials have recently been discussed by Boschi-Filho et al [1] by the algebraic method exploiting the underlying $\mathrm{SO}(2,1)$ Lie algebra. The potentials of [1] generalize the similar but easier anisotropic potentials as discussed by Carpio-Bernido and Bernido [2], Boschi-Filho and Vaidya [3] (algebraic methods) and Chetouani et al [4], Carpio-Bernido and Bernido [5] Carpio-Bernido et al [6], Carpio-Bernido [7] and Grosche [8] (path integral methods). Both potentials look intractable in Cartesian coordinates as well as in polar coordinates. However, if rewritten in terms of two- and three-dimensional parabolic coordinates, the 'radial-harmonic-oscillator' structure is clearly revealed and therefore parabolic coordinates are suitable for a path integral treatment. Parabolic coordinates have also been used in the path integral discussion of the Coulomb and related potentials (Chetouani and Hammann [9], Grosche [8]) and the Kaluza-Klein monopole problem [10]. Note that both potentials $(1,2)$ do not admit a separation in polar coordinates.

In order to set up the path integral formulation, I follow the canonical approach $[11,12$] and I use a product form formulation as described in [13]. Here we have for the quantum Hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m} \Delta_{\mathrm{IB}}+V(q)=\frac{1}{2 m} h^{a c} p_{a} p_{b} h^{b c}+V(q)+\Delta V(q) \tag{4}
\end{equation*}
$$

where it is assumed that a decomposition $g_{a b}=h_{a c} h_{c b}$ of the metric tensor exists, $\Delta_{\text {LB }}$ is the Laplace-Beltrami operator and $p_{a}=-\mathrm{i} \hbar\left(\partial_{a}+\Gamma_{a} / 2\right)$ are the canonical momenta ($\Gamma_{a}=\partial \ln \sqrt{g}$). ΔV is a well defined quantum potential

$$
\begin{gather*}
\Delta V(q)=\frac{\hbar^{2}}{8 m}\left[g^{a b} \Gamma_{a} \Gamma_{b}+2\left(g^{a b} \Gamma_{a}\right)_{, b}+g_{, a b}^{a b}+2 h^{a c} h_{, a b}^{b c}\right. \\
\left.-h_{, a}^{a c} h_{, b}^{b c}-h^{a c}{ }_{, b} h_{, a}^{b c}\right] \tag{5}
\end{gather*}
$$

arising from the specific ordering prescription in the quantum Hamiltonian (4). For the path integral this yields

$$
\begin{align*}
K\left(q^{\prime \prime}, q^{\prime} ; T\right)= & \int \sqrt{g} \mathcal{D} q(t) \exp \left\{\frac{\mathrm{i}}{\hbar} \int_{t}^{t^{\prime \prime}}\left[\frac{m}{2} h_{a c} h_{c b} \dot{q}^{a} \dot{q}^{b}-V(q)-\Delta V(q)\right] \mathrm{d} t\right\} \\
= & \lim _{N \rightarrow \infty}\left(\frac{m}{2 \pi \mathrm{i} \epsilon \hbar}\right)^{N D / 2} \prod_{j=1}^{N-1} \int \mathrm{~d} q_{(j)} \sqrt{g\left(q_{(j)}\right)} \\
& \times \exp \left\{\frac { \mathbf { i } } { \hbar } \sum _ { j = 1 } ^ { N } \left[\frac{m}{2 \epsilon} h_{b c}\left(q_{(j)}\right) h_{\dot{a} c}\left(q_{(j-1)}\right) \Delta q_{(j)}^{a} \Delta q_{(j)}^{b}\right.\right. \\
& \left.\left.-\epsilon V\left(q_{(j)}\right)-\epsilon \Delta V\left(q_{(j)}\right)\right]\right\} \tag{6}
\end{align*}
$$

Here we put $\Delta q_{(j)}=q_{(j)}-q_{(j-1)}$ for $q_{(j)}=q\left(t^{\prime}+j \epsilon\right)\left(\epsilon=\left(t^{\prime \prime}-t^{\prime}\right) / N=T / N\right.$, $j=1, \ldots, N$ in the limit $N \rightarrow \infty)$, and D is the spatial dimension.

I will discuss now these two potentials in the path integral formulation by means of two- and three-dimensional parabolic coordinates.

2. The potential $\boldsymbol{V}_{1}(\boldsymbol{\xi}, \boldsymbol{\eta})$

In the parabolic coordinates for the potential V_{1} we have $\Delta V_{1}(\xi, \eta)=-\hbar^{2} / 8 m \xi^{2} \eta^{2}$, and consequently for the path integral

$$
\begin{align*}
K\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime},\right. & \left.\eta^{\prime}, \phi^{\prime \prime}, \phi^{\prime} ; T\right) \\
= & \int \mathcal{D} \xi(t) \int \mathcal{D} \eta(t)\left(\xi^{2}+\eta^{2}\right) \xi \eta \\
& \times \int \mathcal{D} \phi(t) \exp \left\{\frac{\mathbf{i}}{\hbar} \int_{t^{\prime}}^{t^{\prime \prime}}\left[\mathcal{L}_{1}(\xi, \eta, \phi, \dot{\xi}, \dot{\eta}, \dot{\phi})+\frac{\hbar^{2}}{8 m \xi^{2} \eta^{2}}\right] \mathrm{d} t\right\} \\
= & \frac{1}{2 \pi} \sum_{\nu=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} v\left(\phi^{\prime \prime}-\phi^{\prime}\right)} K_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; T\right) \tag{7}
\end{align*}
$$

where I have separated the ϕ-dependence according to [14] with $K_{\nu}(T)$ given by

$$
\begin{align*}
& K_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime}, \phi^{\prime \prime}, \phi^{\prime} ; T\right)=\left(\xi^{\prime} \xi^{\prime \prime} \eta^{\prime} \eta^{\prime \prime}\right)^{-1 / 2} \int \mathcal{D} \xi(t) \int \mathcal{D} \eta(t)\left(\xi^{2}+\eta^{2}\right) \\
& \times \exp \left(\frac { \mathrm { i } } { \hbar } \int _ { t ^ { \prime } } ^ { t ^ { \prime \prime } } \left\{\frac{m}{2}\left(\xi^{2}+\eta^{2}\right)\left(\dot{\xi}^{2}+\dot{\eta}^{2}\right)-\frac{1}{\xi^{2}+\eta^{2}}\left[\frac{m}{2}\left(\omega_{1}^{2} \xi^{2}+\omega_{2}^{2} \eta^{2}\right)\right.\right.\right. \\
&\left.\left.\left.+\frac{\hbar^{2}}{2 m}\left(\frac{2 b_{1}+\nu^{2}-\frac{1}{4}}{\xi^{2}}+\frac{2 b_{2}+\nu^{2}-\frac{1}{4}}{\eta^{2}}\right)-2 \alpha\right]\right\} \mathrm{~d} t\right) \tag{8}
\end{align*}
$$

Now a time transformation [15, 16] is performed with its continuous and lattice implementation, respectively

$$
\begin{equation*}
s(t)=\int_{t^{\prime}}^{t} \frac{\mathrm{~d} \sigma}{\xi^{2}+\eta^{2}} \quad s^{\prime \prime}=s\left(t^{\prime \prime}\right) \quad \epsilon=\delta\left(\xi_{(j)}^{2}+\eta_{(j)}^{2}\right) \tag{9}
\end{equation*}
$$

where $\widehat{f_{(j)}^{2}} \equiv f\left(q_{(j)}\right) f\left(q_{(j-1)}\right)$ for some function of the coordinates. Of course, we identify $\xi\left(t^{\prime \prime}\right)=\xi\left(s\left(t^{\prime \prime}\right)\right)=\xi\left(s^{\prime \prime}\right) \equiv \xi^{\prime \prime}$, etc. This gives the transformation formulae

$$
\begin{align*}
& K_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; T\right)=\frac{1}{2 \pi i \hbar} \int_{-\infty}^{\infty} \mathrm{d} E \mathrm{e}^{-\mathrm{i} E T / \hbar} G_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; E\right) \\
& G_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; E\right)=\mathrm{i} \int_{0}^{\infty} \mathrm{d} s^{\prime \prime} \mathrm{e}^{2 \mathrm{i} \alpha s^{\prime \prime} / \hbar} \bar{K}_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; s^{\prime \prime}\right) \tag{10}
\end{align*}
$$

with the transformed kernel $\tilde{K}_{\nu}\left(s^{\prime \prime}\right)$ given by

$$
\begin{equation*}
\bar{K}_{\nu}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime} ; s^{\prime \prime}\right)=\tilde{K}_{\xi}\left(\xi^{\prime \prime}, \xi^{\prime} ; s^{\prime \prime}\right) \times \tilde{K}_{\eta}\left(\eta^{\prime \prime}, \eta^{\prime} ; s^{\prime \prime}\right) \tag{11}
\end{equation*}
$$

thus decoupling into two kernels $\widetilde{K}_{\xi}\left(s^{\prime \prime}\right)$ and $\tilde{K}_{\eta}\left(s^{\prime \prime}\right)$ which in turn are given by

$$
\begin{equation*}
\bar{K}_{\xi}\left(\xi^{\prime \prime}, \xi^{\prime} ; s^{\prime \prime}\right)=\frac{m \Omega_{1}}{i \hbar \sin \Omega_{1} s^{\prime \prime}} \exp \left[-\frac{m \Omega_{1}}{2 i \hbar}\left(\xi^{2}+\xi^{\prime \prime 2}\right) \cot \Omega_{1} s^{\prime \prime}\right] I_{\lambda_{1}}\left(\frac{m \Omega_{1} \xi^{\prime} \xi^{\prime \prime}}{i \hbar \sin \Omega_{1} s^{\prime \prime}}\right) \tag{12}
\end{equation*}
$$

and $\tilde{K}_{\eta}\left(\eta^{\prime \prime}, \eta^{\prime} ; s^{\prime \prime}\right)$ with all indices replaced by $1 \rightarrow 2,\left(\Omega_{1 / 2}=\sqrt{\omega_{1 / 2}^{2}-2 E / m}\right.$, $\lambda_{1 / 2}=\sqrt{2 b_{1 / 2}+\nu^{2}}$). Here the well known Peak-Inomata formula [17, 18] for radial path integrals has been applied

$$
\begin{align*}
\int \mathcal{D} r(t) & \exp
\end{aligned} \begin{aligned}
& \left\{\frac{i}{\hbar} \int_{t^{\prime}}^{t^{\prime \prime}}\left[\frac{m}{2} \dot{r}^{2}-\frac{m}{2} \omega^{2} r^{2}-\frac{\hbar^{2}}{2 m} \frac{\lambda^{2}-\frac{1}{4}}{r^{2}}\right] \mathrm{d} t\right\} \\
& \equiv \int \mu_{\lambda}\left[r^{2}\right] \operatorname{D} r(t) \exp \left[\frac{\mathrm{i} m}{2 \hbar} \int_{t^{\prime}}^{t^{\prime \prime}}\left(\dot{r}^{2}-\omega^{2} r^{2}\right) \mathrm{d} t\right] \\
& =\frac{m \omega \sqrt{r^{\prime} r^{\prime \prime}}}{\mathrm{i} \hbar \sin \omega T} \exp \left[-\frac{m \omega}{2 i \hbar}\left(r^{\prime 2}+r^{\prime \prime 2}\right) \cot \omega T\right] I_{\lambda}\left(\frac{m \omega r^{\prime} r^{\prime \prime}}{i \hbar \sin \omega T}\right) \tag{13}
\end{align*}
$$

with the functional weight $\mu_{\lambda}\left[r^{2}\right]$ as defined in $[12,19]$

$$
\begin{align*}
\mu_{\lambda}\left[r^{2}\right] & =\lim _{N \rightarrow \infty} \prod_{j=1}^{N} \mu_{\lambda}\left[r_{(j-1)} r_{(j)}\right] \\
: & =\lim _{N \rightarrow \infty} \prod_{j=1}^{N}\left(\frac{2 \pi m r_{(j-1)} r_{(j)}}{\mathrm{i} \epsilon \hbar}\right)^{1 / 2} \exp \left(\frac{m r_{(j-1)} r_{(j)}}{\mathrm{i} \epsilon \hbar}\right) I_{\lambda}\left(\frac{m r_{(j-1)} r_{(j)}}{\mathrm{i} \epsilon \hbar}\right) \tag{14}
\end{align*}
$$

in order to guarantee a well defined short-time kernel. Let us remark that, according to Fischer et al [20], this functional weight formulation $\mu_{\lambda}\left[r^{2}\right]$ is completely equivalent to the path integral formulation of [17] with angular dependence $\propto \hbar^{2}\left(\lambda^{2}-\frac{1}{4}\right) / 2 m r^{2}$ in the action. Putting everything together I obtain an integral representation for the Green function $G(E)$

$$
\begin{align*}
& G\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime}, \phi^{\prime \prime}, \phi^{\prime} ; E\right)=\frac{\mathrm{i}}{2 \pi}\left(\frac{m}{\mathrm{i} \hbar}\right)^{2} \sum_{\nu=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} \nu\left(\phi^{\prime \prime}-\phi^{\prime}\right)} \Omega_{1} \Omega_{2} \\
& \times \int_{0}^{\infty} \frac{\mathrm{d} s^{\prime \prime} \mathrm{e}^{2 i \alpha s^{\prime \prime} / \hbar}}{\sin \Omega_{1} s^{\prime \prime} \sin \Omega_{2} s^{\prime \prime}} I_{\lambda_{1}}\left(\frac{m \Omega_{1} \xi^{\prime} \xi^{\prime \prime}}{\mathrm{i} \hbar \sin \Omega_{1} s^{\prime \prime}}\right) I_{\lambda_{2}}\left(\frac{m \Omega_{2} \eta^{\prime} \eta^{\prime \prime}}{\mathrm{i} \hbar \sin \Omega_{2} s^{\prime \prime}}\right) \\
& \times \exp \left\{-\frac{m}{2 \mathrm{i} \hbar}\left[\Omega_{1}\left(\xi^{\prime 2}+\xi^{\prime \prime 2}\right) \cot \Omega_{1} s^{\prime \prime}+\Omega_{2}\left(\eta^{\prime 2}+\eta^{\prime \prime 2}\right) \cot \Omega_{2} s^{\prime \prime}\right]\right\} \tag{15}
\end{align*}
$$

Note that the 'addition theorem' for Bessel functions as used in $[6,8,10,15]$ cannot be applied due to $\Omega_{1} \neq \Omega_{2}$ in general. This also shows the non-separability in polar coordinates.

To determine the wavefunctions and the energy spectrum, respectively, I make use of the Hille-Hardy formula [21, p 1038]

$$
\begin{align*}
& \frac{t^{-\lambda / 2}}{1-t} \exp \left(-\frac{x+y}{2} \frac{1+t}{1-t}\right) I_{\lambda}\left(\frac{2 \sqrt{x y t}}{1-t}\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{t^{n} n!}{\Gamma(n+\lambda+1)}(x y)^{\lambda / 2} L_{n}^{(\lambda)}(x) L_{n}^{(\lambda)}(y) \mathrm{e}^{-(x+y) / 2} \tag{16}
\end{align*}
$$

After performing the $s^{\prime \prime}$ integration this yields the quantization condition

$$
\begin{equation*}
\Omega_{1}\left(2 n_{1}+\lambda_{1}+1\right)+\Omega_{2}\left(2 n_{2}+\lambda_{2}+1\right)-2 \alpha / \hbar=0 . \tag{17}
\end{equation*}
$$

Therefore we get for the bound-state contribution of the Green function

$$
\begin{align*}
& G_{\mathrm{bound}}\left(\xi^{\prime \prime}, \xi^{\prime}, \eta^{\prime \prime}, \eta^{\prime}, \phi^{\prime \prime}, \phi^{\prime} ; E\right) \\
& \quad=\sum_{n_{1}, n_{2}=0}^{\infty} \sum_{\nu=-\infty}^{\infty} \frac{1}{E-E_{n_{1}, n_{2}}} \Psi_{n_{1}, n_{2}, r^{\prime}}\left(\xi^{\prime}, \eta^{\prime}, \phi^{\prime}\right) \Psi_{n_{1}, n_{2}, \nu}^{*}\left(\xi^{\prime \prime}, \eta^{\prime \prime}, \phi^{\prime \prime}\right) \tag{18}
\end{align*}
$$

with the wavefunctions

$$
\begin{align*}
& \Psi_{n_{1}, n_{2}, \nu}(\xi, \eta, \phi) \\
&= \frac{\mathrm{e}^{\mathrm{i} \nu \phi}}{\sqrt{2 \pi}}\left[\left(\frac{m}{\hbar}\right)^{3} \frac{\left(2 \Omega_{1} \Omega_{2}\right)^{2}}{A_{1} \Omega_{2}+A_{2} \Omega_{1}} \frac{n_{1}!n_{2}!}{\Gamma\left(n_{1}+\lambda_{1}+1\right) \Gamma\left(n_{2}+\lambda_{2}+1\right)}\right]^{1 / 2} \\
& \times\left(\frac{m \Omega_{1}}{\hbar} \xi^{2}\right)^{\lambda_{1} / 2}\left(\frac{m \Omega_{2}}{\hbar} \eta^{2}\right)^{\lambda_{2} / 2} L_{n_{1}}^{\left(\lambda_{1}\right)}\left(\frac{m \Omega_{1}}{\hbar} \xi^{2}\right) L_{n_{2}}^{\left(\lambda_{2}\right)}\left(\frac{m \Omega_{2}}{\hbar} \eta^{2}\right) \\
& \times \exp \left[-\frac{m}{2 \hbar}\left(\Omega_{1} \xi^{2}+\Omega_{2} \eta^{2}\right)\right] \tag{19}
\end{align*}
$$

and the energy spectrum has the form

$$
\begin{gather*}
E_{n_{1}, n_{2}}=\frac{m / 2}{\left(A_{1}^{2}-A_{2}^{2}\right)^{2}}\left[\left(A_{1}^{2}-A_{2}^{2}\right)\left(A_{1}^{2} \omega_{1}^{2}-A_{2}^{2} \omega_{2}^{2}\right)-\frac{4 \alpha^{2}}{\hbar^{2}}\left(A_{1}^{2}+A_{2}^{2}\right)\right. \\
\left.+\frac{4 \alpha}{\hbar} A_{1} A_{2} \sqrt{\left(A_{1}^{2}-A_{2}^{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)+\frac{4 \alpha^{2}}{\hbar^{2}}}\right] . \tag{20}
\end{gather*}
$$

These results are equivalent to those in [1]. Here denote $A_{1 / 2}=2 n_{1 / 2}+\lambda_{1 / 2}+1$, with

$$
\begin{equation*}
\Omega_{1 / 2}=\frac{1}{\left|A_{1}^{2}-A_{2}^{2}\right|}\left|A_{2 / 1} \sqrt{\left(A_{1}^{2}-A_{2}^{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)+\frac{4 \alpha^{2}}{\hbar^{2}}}-\frac{2 \alpha}{\hbar} A_{1 / 2}\right| \tag{21}
\end{equation*}
$$

and all quantities are valid for $A_{1} \neq A_{2}$. For $A_{1}=A_{2}=A\left(\omega_{1} \neq \omega_{2}\right)$ one obtains for the energy spectrum

$$
\begin{equation*}
E_{A}=\frac{m}{4}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)-\frac{m \alpha^{2}}{2 \hbar^{2} A^{2}}-\frac{m \hbar^{2} A^{2}}{32 \alpha^{2}}\left(\omega_{1}^{2}-\omega_{2}^{2}\right) . \tag{22}
\end{equation*}
$$

For the special case $\omega_{1}=\omega_{2}=\omega\left(A_{1} \neq A_{2}\right)$ we get

$$
\begin{equation*}
E_{n_{1}, n_{2}}=\frac{m}{2} \omega^{2}-\frac{m \alpha^{2}}{2 \hbar^{2}\left(\frac{1}{2}\left(A_{1}+A_{2}\right)\right)^{2}} \tag{23}
\end{equation*}
$$

and this case fixes the sign in the square-root expressions. In the same limit:

$$
m \Omega_{1 / 2} / \hbar \rightarrow 2 m|\alpha| /\left[\hbar^{2}\left(A_{1}+A_{2}\right)\right]
$$

and

$$
(m / \hbar)^{3}\left(2 \Omega_{1} \Omega_{2}\right)^{2} /\left(A_{1} \Omega_{2}+A_{2} \Omega_{1}\right) \rightarrow 2 /\left[a^{3}\left(\frac{1}{2}\left(A_{1}+A_{2}\right)\right)^{4}\right]
$$

$\left(\omega_{1} \rightarrow \omega_{2}\right),\left(a=\hbar^{2} / m|\alpha|\right.$-the Bohr radius $)$ and all three quantities are the correct expressions for the Hartmann potential (compare, e.g., $[1,5-8]$). The correct normalization of the bound-state wavefunctions is checked by the property of the Coulomb wavefunctions. (Note the importance of the absolute values in $\Omega_{1 / 2}$ for the correct evaluation of the residua of the Green function at the poles of the energy spectrum.)

3. The potential $V_{2}(u, v, z)$

As for V_{1} we formulate the path integral for two-dimensional parabolic coordinates. Here we have $\Delta V_{2}=0$. This gives

$$
\begin{align*}
& K\left(u^{\prime \prime}, u^{\prime}, v^{\prime \prime}, v^{\prime}, z^{\prime \prime}, z^{t} ; T\right) \\
&= \int \mathcal{D} u(t) \int \mathcal{D} v(t) 4\left(u^{2}+v^{2}\right) \\
& \times \int \mathcal{D} z(t) \exp \left[\frac{\mathrm{i}}{\hbar} \int_{t^{\prime}}^{t^{\prime \prime}} \mathcal{L}_{2}(u, v, z, \dot{u}, \dot{v}, \dot{z}) \mathrm{d} t\right] \\
&= K_{u v}\left(u^{\prime \prime}, u^{\prime}, v^{\prime \prime}, v^{\prime} ; T\right) \times K_{z}\left(z^{\prime \prime}, z^{\prime} ; T\right) \tag{24}
\end{align*}
$$

where the z-dependence separates immediately with $K_{z}(T)$ given by

$$
\begin{equation*}
K_{z}\left(z^{\prime \prime}, z^{\prime} ; T\right)=\frac{m \omega_{3} \sqrt{z^{\prime} z^{\prime \prime}}}{\mathrm{i} \hbar \sin \omega_{3} T} \exp \left[-\frac{m \omega_{3}}{2 i \hbar}\left(z^{\prime 2}+z^{\prime \prime 2}\right) \cot \omega_{3} T\right] I_{6}\left(\frac{m \omega_{3} z^{\prime} z^{\prime \prime}}{\mathrm{i} \hbar \sin \omega_{3} T}\right) . \tag{25}
\end{equation*}
$$

The remaining (u, v) path integrations have the form

$$
\begin{align*}
& K_{u v}\left(u^{\prime \prime}, u^{\prime}, v^{\prime \prime}, v^{\prime} ; T\right) \\
&= \int \mathcal{D} u(t) \int \mathcal{D} v(t) 4\left(u^{2}+v^{2}\right) \\
& \times \exp \left\{\frac { \mathrm { i } } { \hbar } \int _ { t ^ { \prime } } ^ { t ^ { \prime \prime } } \left[2 m\left(u^{2}+v^{2}\right)\left(\dot{u}^{2}+\dot{v}^{2}\right)-\frac{1}{4\left(u^{2}+v^{2}\right)}\right.\right. \\
&\left.\left.\times\left(-4 \alpha+\frac{m}{2} \omega_{1}^{2} u^{2}+\hbar^{2} \frac{\beta+\gamma-\frac{1}{4}}{2 m u^{2}}+\frac{m}{2} \omega_{2}^{2} v^{2}+\hbar^{2} \frac{\beta-\gamma-\frac{1}{4}}{2 m v^{2}}\right)\right] \mathrm{d} t\right\} . \tag{26}
\end{align*}
$$

The appropriate time transformation now is

$$
\begin{equation*}
s(t)=\int_{t^{\prime}}^{t} \frac{\mathrm{~d} \sigma}{4\left(u^{2}+v^{2}\right)} \quad s^{\prime \prime}=s\left(t^{\prime \prime}\right) \quad \epsilon=4 \delta\left(u_{(j)}^{2}+v_{(j)}^{2}\right) \tag{27}
\end{equation*}
$$

We repeat the steps of equations (10) and (11) (just replace $\nu \rightarrow u v, \xi \rightarrow u, \eta \rightarrow v$ and $\alpha \rightarrow 2 \alpha$) and we arrive at

$$
\begin{equation*}
\bar{K}_{u v}\left(u^{\prime \prime}, u^{\prime}, v^{\prime \prime}, v^{\prime} ; s^{\prime \prime}\right)=\tilde{K}_{u}\left(u^{\prime \prime}, u^{\prime} ; s^{\prime \prime}\right) \times \tilde{K}_{v}\left(v^{\prime \prime}, v^{\prime} ; s^{\prime \prime}\right) \tag{28}
\end{equation*}
$$

Therefore again I have achieved a decoupling of the u and v path integrations with the kernels $K_{u}\left(s^{\prime \prime}\right)$ and $K_{v}\left(s^{\prime \prime}\right)$ given by \dagger

$$
\begin{align*}
\breve{K}_{u}\left(u^{\prime \prime}, u^{\prime} ; s^{\prime \prime}\right) & =\frac{m \Omega_{1} \sqrt{u^{\prime} u^{\prime \prime}}}{\mathrm{i} \hbar \sin \Omega_{1} s^{\prime \prime}} \exp \left[-\frac{m \Omega_{1}}{2 i \hbar}\left(u^{2}+u^{\prime \prime 2}\right) \cot \Omega_{1} s^{\prime \prime}\right] \\
& \times I_{\lambda_{1}}\left(\frac{m \Omega_{1} u^{\prime} u^{\prime \prime}}{\mathrm{i} \hbar \sin \Omega_{1} s^{\prime \prime}}\right) \tag{29}
\end{align*}
$$

and $\tilde{K}_{v}\left(v^{\prime \prime}, v^{\prime} ; s^{\prime \prime}\right)$ with all indices replaced by $1 \rightarrow 2$. The corresponding Green function $G_{u v}(E)$ is constructed in the same way as for $V_{1}(\xi, \eta)$. Expanding the kernels by means of the Hille-Hardy formula, we obtain, after performing the $s^{\prime \prime}$ integration, the quantization condition $\Omega_{1}\left(2 n_{1}+\lambda_{1}+1\right)+\Omega_{2}\left(2 n_{2}+\lambda_{2}+1\right)-4 \alpha / \hbar=$ 0 , and this gives, in the usual way, the energy spectrum and the bound-state wavefunctions, respectively,

$$
\begin{align*}
& E_{n_{1}, n_{2}}= \frac{m / 8}{\left(A_{1}^{2}-A_{2}^{2}\right)^{2}}\left[\left(A_{1}^{2}-A_{2}^{2}\right)\left(A_{1}^{2} \omega_{1}^{2}-A_{2}^{2} \omega_{2}^{2}\right)-\frac{16 \alpha^{2}}{\hbar^{2}}\left(A_{1}^{2}+A_{2}^{2}\right)\right. \\
&+\frac{8 \alpha}{\hbar} A_{1} A_{2} \sqrt{\left.\left(A_{1}^{2}-A_{2}^{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)+\frac{16 \alpha^{2}}{\hbar^{2}}\right]+\omega_{3}\left(2 n_{3}+\delta+1\right)} \tag{30}\\
& \Psi_{n_{1}, n_{2}, n_{3}}(u, v, z) \\
&= {\left[2 \sqrt{\frac{m \omega_{3}}{\hbar}}\left(\frac{m}{\hbar}\right)^{3} \frac{\left(\Omega_{1} \Omega_{2}\right)^{2}}{A_{1} \Omega_{2}+A_{2} \Omega_{1}} \cdot \frac{n_{1}!n_{2}!}{\Gamma\left(n_{1}+\lambda_{1}+1\right) \Gamma\left(n_{2}+\lambda_{2}+1\right)}\right]^{1 / 2} } \\
& \times \sqrt{u v z}\left(\frac{m \Omega_{1}}{\hbar} u^{2}\right)^{\lambda_{1} / 2} L_{n_{1}}^{\left(\lambda_{1}\right)}\left(\frac{m \Omega_{1}}{\hbar} u^{2}\right)\left(\frac{m \Omega_{2}}{\hbar} v^{2}\right)^{\lambda_{2} / 2} \\
& \times L_{n_{2}}^{\left(\lambda_{2}\right)}\left(\frac{m \Omega_{2}}{\hbar} v^{2}\right)\left(\frac{m \omega_{3}}{\hbar} z^{2}\right)^{\delta / 2} L_{n_{3}}^{(\delta)}\left(\frac{m \omega_{3}}{\hbar} z^{2}\right) \\
& \times \exp \left[-\frac{m}{2 \hbar}\left(\Omega_{1} u^{2}+\Omega_{2} v^{2}+\omega_{3} z^{2}\right)\right] \tag{31}
\end{align*}
$$

Here $A_{1 / 2}$ and $\Omega_{1 / 2}$ are similarly given as in equation (21) (replace $\alpha \rightarrow 2 \alpha$ and note the remark above), and all considerations from the previous section can be made analogously. n_{3} denotes the quantum number arising from expanding equation (25) by means of the Hille-Hardy formula.
$\dagger \lambda_{1 / 2}=\sqrt{\beta \pm \gamma}, \Omega_{1 / 2}=\sqrt{\omega_{1 / 2}^{2}-8 E / m}$, these quantities must not be confused with those from section 2

4. Discussion

In this letter I have used the path integration technique to solve two highly asymmetrical two- and three-dimensional Coulomb-like potentials, which are generated by a $\operatorname{SO}(2,1)$ dynamical algebra. The problems in question were only separable in two- and three-dimensional parabolic coordinates, respectively. In both cases a time transformation was needed to reveal the underlying 'radial harmonicoscillator'structure of the two potentials. The bound-state wavefunctions and the energy spectrum were explicitly evaluated and compared with respect to limiting cases.

Let us stress that the approach by the Kustaanhcimo-Stiefel transformation (compare with $[6,8,15]$) by which the path integral for the hydrogen atom was solved by Duru and Klcinert [15] can also be used to evaluate the path integral for the potential $V_{1}(x, y, z)$. However, the calculation presented here is much simpler than by the Kustaanheimo-Stiefel transformation [22] because
(i) the use of the Kustaanheimo-Stiefel transformation requires the introduction of a fourth auxiliary variable x_{4} which complicates the path integral calculation considerably and makes it somewhat ambiguous; and
(ii) the transformation from three-dimensional Cartesian coordinates to threedimensional parabolic coordinates is, in fact, closely related to the KustaanheimoStiefel transformation such that after integrating out the auxiliary variable x_{4} equation (15) is recovered.

Note that the transformation from two-dimensional Cartesian coordinates to twodimensional parabolic coordinates in the case of $V_{2}(x, y, z)$ is, in fact, a twodimensional Kustaanheimo-Sticfel transformation [15, 23].

Therefore I have added two further instructive examples to the list of exactly solvable path integrals.

References

[1] Boschi-Filho H, de Souza M. and Vaidya A N 1991 J. Phys. A: Math Gen. 244981 Boschi-Filho H and Vaidya A N 1991 Ann. Phys., NY 2121
[2] Carpio-Bemido M V and Bernido C 1989 Phys: Lett. 137A 1
[3] Boschi-Filho H and Vaidya A N 1990 Phys. Lett. 145A 69; 1990 Phys. Lett. 149A 366; 1990 J. Math. Phys. 311951
[4] Chetouani L, Guechi L and Hammann T F 1987 Phys. Lett. 125A 277; 1989 J. Math. Phys. 30655
[5] Carpio-Bernido M V and Bernido C 1989 Phys. Lett. 134A 395
[6] Carpio-Bernido M V, Bernido C and Inomata A 1989 Third Conf. on Path Integrals from meV to MeV ed V Sa-yakanit al (Singapore: World Scientific) p 422
Carpio-Bernido M V and Inomata A 1986 Bielefeld Encounters in Pitysics and Mathematics VII: Path Integrals from meV to MeV ed M C Gutzwiller at al (Singapore: World Scientific) p 261
[7] Carpio-Bernido M V 1991 J. Math. Phys 32 1799; 1991 J. Phys. A: Math Ger. 243013
[8] Grosche C 1991 Coulomb potentials by path integration Preprint IMPERIAL/TP/90-91/28 to appear in Fortschr. Phys. 40 (1992)
[9] Chetouani L and Hammann T F 1986 Phys. Rev: A 34 4737; 1987 Nuovo Cinento B 981
[10] Grosche C 1991 J. Phys. A: Math. Gen. 241771
[11] Feynman R P 1948 Rev. Mod Phys. 20367
DeWitt B S 1957 Rev. Mod. Phys. 29377
McLaughlin D W and Schulman L S 1971 J. Math Phys. 122520
Mayes I W and Dowker J S 1972 Proc. R. Soc. A 327171
Mizrahi M M 1975 J. Math Phys. 162201
Gervais J-L and Jevicki A 1976 Nucl Phys. B 11093

Omote M 1977 Nucl. Phys. B 120325
Marinov M S 1980 Phys. Rep. 601
Lee T D 1981 Particle Physics ant Introduction to Field Theory (Chur, Switzerland: Harwood)
[12] Grosche C and Steiner F 1987 Z. Phys. C 36699
[13] Grosche C 1988 Phys. Lett. 128A 113
[14] Grosche C 1990 J. Phys. A: Math Gen 234885
[15] Duru I H and Kleinert H 1979 Phys. Lett. 84B 185; 1982 Fortschr. Phys. 30401
[16] Kleinert H 1987 Phys. Lett. 120A 361
[17] Peak D and Inomata A 1969 J. Math. Phys. 101422
[18] Duru I H 1985 Phys. Lett. 112A 421
[19] Steiner F 1986 Bielefeld Encounters in Physics and Mathematics VIF: Path Mitgrals from meV to MeV ed M C Gutzwiller et al (Singapore: World Scientific) p 335
[20] Fischer W, Leschke H and Müller P 1991 Changing dimension and time: two well-founded and practical techniques for path integration in quantum physics Preprint Universităt Erlangen* Nürnberg
[21] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products (New York: Academic)
[22] Grosche C 1992 Phys. Lett 165A 185
[23] Inomata A 1982 Phys. Lett. 87A 387

