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U T T E R  TO THE EDITOR 

Path integral solution of two potentials related to the SO(2,l) 
dynamical algebra 

Christian Grosche 
International School for Advanced Studies, SISSA, Stmda COstiera 11, 34014 'Uieste, 
Miramare, Italy 

Received 16 June 1992 

AbsIracL Two classes of generalized Cbulomb potenlials related lo the SO(2,l) dynamical 
algebra are rigorously solved by path integralion in terms or parabolic mordinates. 

1. Intrwluction 

In this paper I want to discuss hvo classes of potentials related to the SO(2,l) 
dynamical symmetry. They are 

(i) (r = d x 2  + y2 + zz) 
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with 2 = u2 - v2, y = ~ U U ,  -00 < U , V  < 00, z > 0. Note that due to the 
strong singularity at y = 0, the regions (-cc < y < 0) and (0 < y < 00) are 
demupled such that it is suficient to mnsider only the domain 0 < U, z < m, T E R, 
respectively, 0 < U, U ,  z < 00. The corresponding classical Lagrangians for the two 
potentials in two-and three-dimensional parabolic coordinates, respectively, have the 
form 

2 2 ' 2  

(3) 
L I ( € , % A L % 4 ) =  ;m[(€2+.r lz) ( i2+iZ)+F q 4 1 -  VI(€,O) 

& ( U ,  21, +, G ,  6, i )  = ;m[4(u* + V2) (G*  + 2 )  + 21 - & ( U ,  U ,  2). 

V, can be seen as a highly distorted spherical Coulomb field with an additional double 
M g  well, and V, as a similar highly distorted cylindrical Coulomb field, respectively. 
These two highly singular non-isotropic potentials have recently been discussed by 
Boschi-Fdho el a1 (11 by the algebraic method exploiting the underlying SO(2,l) Lie 
algebra. The potentials of [ I ]  generalize the similar hut easier anisotropic potentials as 
discussed by Carpio-Bernido and Bemido [2], Boschi-Filho and Wdya 1-71 (algebraic 
mcthods) and Chetouani et al [4], Carpio-Bernido and Bernido [SI Carpio-Bernido et 
a1 [6], Carpio-Bernido 171 and Grosche [SI @ath integral methods). Both potentials 
look intractable in Cartesian coordinates as well as in polar coordinates. However, if 
rewritten in t c m  of two- and threedimensional parabolic coordinates, the 'radial- 
harmonic-oscillator' structure is clearly revealed and therefore parabolic coordinates 
are suitable for a path integral treatment. Parabolic coordinates have also been used 
in the path integral discussion of the Coulomb and related potentials (Chetouani and 
Hammann [9], Grosche [SI) and the Kaluza-Klein monopole problem [ lo ] .  Note that 
both potentials (1,2) do not admit a separation in polar coordinates. 

In order to set up the path integral formulation, I follow the canonical approach 
[ l l ,  121 and I use a product form formulation as described in [13]. Here we have for 
the quantum Hamiltonian 

h2 1 H = - - A  2 m  LB + l'(q) = G h o c P , P b h b c  v(P) + AV(q) (4) 
where it is assumed that a decomposition gab = h,,hCb of the metric tensor exists, 
A, is the Laplace-Beltrami operator and p ,  = -ih(a, -t r a / 2 )  are the canonical 
momenta (r, = 81114). A V  is a wcll defined quantum potential 

h2 
8m AV(q) = - [ g n b r a r b  + 2(gabrr,) ,b + + 2hachbc,.b 

- hnc,=hbc,* - hoe ,bhbc ,a ]  (5) 
arising from the specific ordering prescription in the quantum Hamiltonian (4). For 
the path integral this yields 

IC(q",q';T) = / f i % ( ~ ) ~ P { ~ / ,  I [ F h s c h c b 4 a 4 b  - v(P)-AV(q)]  dt} 
. 1" 
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Here we put Aqj)  = qLi) - q( j - l )  for qj) = p( t '+  j e )  (C = (2" - t ' ) / N  = T / N ,  
j = 1,. . . , N in the limit N - m), and D is the spatial dimension. 

I will discuss now these lwo potentials in the path integral formulation by means 
of two- and three-dimensional parabolic coordinates. 

2. The potential Vl(€,9) 

Now a time transformation 115,161 is performed with its continuous and lattice 
implementation, respectively 

(9) s ( t )  = J t  -E- s" = s ( t " )  E = 6 ( E t j )  + 17tj)) 
t' EZ  + + 

.--.-.. 
where f?,, 
identify <( t" )  = E ( s ( t " ) )  = E(s" )  

f (q( j ) ) f (qU-l ) )  for some function of the coordinates. Of course, we 
r ,  etc. This gives the transformation formulae 

1 m  
2nih -m 

Ku(tr',Ei, q",q'; T) = - J dEe-iETIIG,,(.$",F', V I ' ,  q'; E) 
m (10) 

~ ~ ( ~ ~ t , t ~ , q ~ ~ , q ~ ;  E) = i J d,tleZi~S'f/hKy(El),Et , ql'*  4; 8") 
0 

with the transformed kernel f?"(d') given by 

K,(E",EJ,11",q1;s") = K<("';S'') x Kq(?f ,?7';s '~)  (1 1) 
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thus decoupling into two kernels k<(s") and kq(df) which in turn are given by 

(12) 

and kq($',~f;~'') with all indices replaced by 1 -+ 2, = JW, 
All, = J-). Here the well~known Peak-Inomata formula [17,18] for radial 
path integrals has been applied 

~ ~ ~~ 

- - m w m  eXp [-?(r" t r"')cotwT] I, ( itlsinwT) mwr'r" (13) ihsinwT Iii  

with the functional weight px[rz] as defined in [12,19] 

in order to guarantee a well defined short-time kernel. Let us remark that, according 
to Fscher er al [ZO], this functional weight formulation px[?] B completely equivalent 
to the path integral formulation of [17J with angular dependence 0: tlZ(AZ- a)/Zmr2 
in the action. Putting everything together I obtain an integral representation for the 
Green function C( E) 

(15) 

Note that the 'addition theorem' for Bcssel functions as used in [6,8, IO, 1.51 cannot 
be applied due to Ql f Q, in general. This also shows the non-separability in polar 
coordinates. 
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?b determine the wavefunctions and the energy spectrum, respectively, I make 
use of the Hille-Hardy formula [21, p 10381 

1 - A / ,  = + Y 1 + t )  (e) 
-ev 1-1 (-FE 1-1 

After performing the s'' integration this yields the quantization condition 

Q1(2nl + A, + 1) + Qz(2nz + A, + 1) - 2 a / h  = 0. (17) 

Therefore we get for the bound-state contribution of the Green function 

Cbund(€", t', 4 ' r  d ,  4", 4'; E )  

with the wavefunctions 

~ n , , n t , Y ( € , % 4 )  

and the energy spectrum has the form 

These results are equivalent to those in [I]. Here denote A,,2 = 2n,,* + A,!, + 1, 
with 

and all quantities are valid for A, # A,. For A ,  = A, = A (U, # u2) one obtains 
for the energy spectrum 
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For the special case w1 = w, = w ( A ,  + A2) we get 

and this case fixes the sign in the squareroot expressions. In the Same limit: 

mQl/,/h i* 2ml4/[h2(A1 + Ad1 

(m/h)3(2Q1Qd2/(A,Q, + ~ ~ 0 ~ )  + 2 / [ a 3 ( M  t ~ ~ ) ) ~ 1  
and 

(wl + wz), (a = fi*/m)o)--the Bohr radius) and all three quantities are the 
correct expressions for the Hartmann potential (Compare, eg., [1,5-8]). The correct 
normalization of the bound-staie wavefunctions is checked by the properly of the 
Coulomb wavefunctions. (Note the importance of the absolute values in Ql,2 for the 
Correct evaluation of the residua of the Green function at the poles of the energy 
spectrum.) 

3. The potential V2(u,u ,+)  

As for \< we formulate the path integral for two-dimensional parabolic coordinates. 
Here we have AV, = 0. This gives 

I < ( u " , u ' , v " , ~ ~ , z ' ' , ~ ' ; T )  

= J D U ( + h o ) q U 2  + v2) 

= I~,,(u",u',v'',v';T) x IC,(z", 2 ; T )  (24) 
where the zdependence separates immediately with IT,(?') given by 

mw3&T exp [ - 2 ( z t z  mw + z~~2)co tw3T I, mw3z'zf' 
KZ(z",z';T) = ihsinw,T 2ih 1 ( ihs inw,T)  

The remaining (U,  U) path integrations have the form 

K,,(u",ul,v",v';T) 

fizp tr - 4 ' m  - - +) ] d,}. + - w y  + h2 2mu2 2 2mv2 
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A Discussion 

In this letter I have used the path integration technique to solve two highly 
asymmetrical two- and three-dimensional Coulomb-like potentials, which are 
generated by a SO(2,l) dynamical algebra. The problems in question were only 
separable in two- and three-dimensional parabolic coordinates, respectively. In both 
cases a time transformation was needed to reveal the underlying ‘radial harmonic- 
oscillator’ structure of the two potentials. The bound-state wavefunctions and the 
energy spectrum were explicitly evaluated and compared with respect to limiting 
CaseS. 

Let us stress that the approach by the Kustaanheimc&tiefel transformation 
(compare with [6,8, U]) by which the path integral for the hydrogen atom was solved 
by Duru and Klcinert [U] can also be used to evaluate the path integral for the 
potential & ( z ,  y, 2). However, the calculation presented here is much simpler than 
by the KustaanheimoStiefel transformation [22] because 

(i) the use of. the Kustaanheimetiefel transformation requires the introduction 
of a fourth auxiliary variable z4 which complicates the path integral calculation 
considerably and makes it somewhat ambiguous; and 

(ii) the transformation from threedimcnsional Cartesian coordinatcs to three- 
dimensional parabolic coordinates is, in fact, closely related to the Kustaanheimo- 
Stiefel transformation such that after integrating out the auxiliary variable z4 equation 
(15) is recovered. 
Note that the transformation from two-dimensional Cartesian coordinates to two- 
dimensional parabolic coordinates in the case of \$(z,y,+) is, in fact, a two- 
dimensional KustaanheimoStiefel transformation 115, U]. 

Therefore I have added two further instructive examples to the list of exactly 
solvable path integrals. 
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