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LETTER TO THE EDITOR

Path integral solution of two potentials related to the SO(2,1)
dynamical algebra

Christian Grosche

International School for Advanced Studies, SISSA, Strada Costiera 11, 34014 Trieste,
Miramare, Italy

Received 16 June 1992

Abstract. Two classes of generalized Coulombr potentials related to the SO(2,1) dynamical
algebra are rigorously solved by path integration in terms of parabolic coordinates.

1. Introduction

In this paper I want to discuss two classes of potentials related to the SO(2,1)
dynamical symmetry. They are
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with @ = u? — v2, y = 2uv, —00 < u,v < o0, z > 0. Note that due to the
strong singularity at y = 0, the regions (—oo < y < 0) and (0 < y < o0) are
decoupled such that it is sufficient to consider only the domain 0 < ¥,z < o0, v € R,
respectively, 0 < u, v,z < oo. The corresponding classical Lagrangians for the two
potentials in two-and three-dimensional parabolic coordinates, respectively, have the
form
Ly(&,m, 6, €11, 0) = 3ml(€7 + n7)(E + 77) + E0"¢%] - Vi(§,n) &
Ly(u,v,2,%,0,2) = %m[f#(uz + v?)(w? + 9%) + 2% ~ Vy(u, v, 2).
V| can be seen as a highly distorted spherical Coulomb field with an additional double
ring well, and V; as a similar highly distorted cylindrical Coulomb field, respectively.
These two highly singular non-isotropic potentials have recently been discussed by
Boschi-Filho e af {1] by the algebraic method exploiting the underlying SO(2,1) Lie
algebra. The potentials of [1] generalize the similar but easier anisotropic potentials as
discussed by Carpio-Bernido and Bernido [2], Boschi-Filho and Vaidya {3] (algebraic
mcthods) and Chetouani et af [4}, Carpio-Bernido and Bernido [5] Carpio-Bernido et
al [6], Carpio-Bernido [7] and Grosche {8] (path integrai methods). Both potentials
look intractable in Cartesian coordinates as well as in polar coordinates. However, if
rewritten in tcrms of two- and three-dimensional parabolic coordinates, the ‘radial-
harmonic-oscillator® structure is clearly revealed and therefore parabolic coordinates
are suitable for a path integral treatment. Parabolic coordinates have also been used
in the path integral discussion of the Coulomb and related potentials (Chetouvani and
Hammann [9], Grosche [8]) and the Kaluza-Klein monopole problem [10]. Note that
both potentials (1,2) do not admit a separation in polar coordinates.

In order to set up the path integral formulation, I follow the canonical approach
{11,12] and I use a product form formulation as described in [13]. Here we have for
the quantum Hamiltonian

A 1
H=~5—Ap+V(q) = 5—h*pph" + V() + AV(0) (4
where it is assumed that a decomposition g,, = h, h,, Of the metric tensor exists,
Apg is the Laplace-Beltrami operator and p, = —ii(8, + I',/2) are the canonical

momenta (', = 8In,/g). AV is a well defined quantum potential
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arising from the specific ordering prescription in the quantum Hamiltonian (4). For
the path integral this yields
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Here we put AQ(J) = (I(J) - q(J_D for Q(J) = q‘(f.’ -+ Jf) (6 = (t” - t’)/N = T/N,
Jj=1,...,N in the limit N — o0), and D is the spatial dimension.

I will discuss now these two potentials in the path integral formulation by means
of two- and three-dimensional parabolic coordinates.

2. The potential V;(&,n)

In the parabolic coordinates for the potential V, we have AV|(£,n) = —k?/ 8m&?n?,
and consequently for the path integral
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where I have separated the ¢-dependence according to [14] with K ,(7T) given by

K, (&, n", 0, ¢",¢";T) = (£&"n'n")" 12 ] DE(t) f Dn(£)(€% + n%)
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Now a time transformation [15,16] is performed with its continuous and lattice
implementation, respectively

t do r—
s=[ arm =) e=sgry) O
where fg) = f(q(y) f(q(j-y)) for some function of the coordinates. Of course, we
identify £(t") = £(s(1")) = £(s") = £”, etc. This gives the transformation formulae
1

s | 4B TG, (€ 0" 5 E)
(10)

K,(&",&,n",nT) =

GV(E”’ ¢,n", 0 E) = iL ds" eﬁas”/h]?y(f",f’, 7 0 s")

with the transformed kernel K, (s") given by

K, (€",¢ ", n58") = K(&",€58") x Ko (", n'3s") an
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thus decoupling into two kernels IE’E(.s" ) and K’ﬂ( s"} which in turn are given by
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and K, (n",n';s") with all indices replaced by 1 — 2, (91/? = \Jw}, —2E[/m,

Aj2 = /261, + 7). Here the well known Peak-Inomata formula [17, 18] for radial
path integrals has been applied
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with the functional weight 1, [»?] as defined in [12, 19]
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in order to guarantee a well defined short-time kernel. Let us remark that, according
to Fischer et af [20], this functional weight formulation x,[r?] is completely equivalent
to the path integral formulation of [17] with angular dependence x 2(A%~ 1} /Zmr?
in the action. Putting everything together I obtain an integral representation for the
Green function G( E)

i my2 > (bt — b
G(E”’ &f’ n”'.‘ n’!qBH, ¢’; E = 5; ('ﬁ) Z e[ (¢ ¢ )QIQZ

@ _ds"eles"/h me, £ mQ,nn"
X fn sin ©2, 5" sin 2, 5" I (ihsinﬂls") b, (W)
x exp {7 [1(67 + €7 ot 25" + (0 + 1%) 0t 9,7}
(15)
Note that the ‘addition theorem’ for Bessel functions as used in {6, 8, 10, 15) cannot

be applied due to {2; # €2, in general. This also shows the non-separability in polar
coordinates.
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To determine the wavefunctions and the energy spectrum, respectively, 1 make
use of the Hille-Hardy formula [21, p 1038]

)
1 exp (_:c +yl+ t) I (Zx/myt)

1I—-1 2 1-1 1—t

= Z F(n+ i T xR @ D @)e . e

After performing the s” integration this yields the quantization condition
Q(2ny + A+ 1) +2,(2n, + A, + 1) - 2a/h = 0. (17
Therefore we get for the bound-state contribution of the Green function

Gbound(ﬁn g!a 77”3 ﬂia qb” ¢”' E)
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with the wavefunctions
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and the energy spectrum has the form

mf2

B = taz_ 23

(A - AD(Alwi - Alwd) - (A2+A)

4o 4o
+?A1A2\/(A% - A (wi-wl) + h_zj . (20)

These results are equivalent to those in [1]. Here denote A, = 2n;5 + A5 + 1,
with

1

2
Qg = ———e
2T AT A

AZ!I\/(A% - A%)(L\Jl - wz) + ";-TAIIZ (21)

and all quantities are valid for A; # A,. For A; = A, = A (w| # w,) one obtains
for the energy spectrum

ma?  mhtA 2
WAL 322( ).
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For the special case w; = w, = w (A4, # A,) we get

m 2

E — _wz _ mao

w7 TR+ ADY
and this case fixes the sign in the square-root expressions. In the same limit:
miy g, fh 2mjal/[R (A + Az

23)

and
(m/ﬁ)3(291§22)2/(A,92 + A, 4) — 2/[‘13( %(Al + Az))ﬂ

(w; = wy), (¢ = K?/mlo|—the Bohr radius) and all three quantities are the
correct expressions for the Hartmann potential (compare, e.g., [1,5-8]). The correct
normalization of the bound-state wavefunctions is checked by the property of the
Coulomb wavefunctions. (Note the importance of the absolute values in Q,,, for the
correct evaluation of the residua of the Green function at the poles of the energy
spectrum.)

3. The potential Vo(u,v, z)

As for V| we formulate the path integral for two-dimensional parabolic coordinates.
Here we have AV, = 0. This gives

K(u”, v, o, v, 2", 25 T)

= fpu(t)/m(t)quzq-vz)

. n
x f’.Dz(t)exp [-;71/ le(u,v,z,il,ia,z')dt}
t!
= K, (v, v/, v", o, T) x K, (2", 2;T) (24)

where the z-dependence separates immediately with K,(T') given by

nf ot f Lt
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_ The remaining (w, v) path integrations have the form
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The appropriate time transformation now is

t do ——————
o) = -/: Xy o =S e=48(uf 1) @D
We repeat the steps of equations (10) and (11) (just replace v — uv, £ — u, 7 — v
and & — 2a) and we arrive at
K, (v, v, v, v s") = K, (u",u';s") x K, (v",v;5"). (28)

Therefore again I have achieved a decoupling of the u and v path integrations with
the kernels K, (s”) and K, (s") given byt

mvVu'u ex
ifisin Q,s”

[
I, () | 29)

Hisin £2,s"

Ru(un, u'ys") = _ T;f;l (uﬂ + u”z) cot 'le”]

and K, (v",v";s") with all indices replaced by 1 — 2. The corresponding Green
function G, ,(F) is constructed in the same way as for V{(£,n). Expanding the
kernels by means of the Hille-Hardy formula, we obtain, after performing the s
integration, the quantization condition £,(2n,+ A+ 1)+ ,(2n,+ A+ 1} —4a/h =
0, and this gives, in the usual way, the energy spectrum and the bound-state
wavefunctions, respectively,
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Here A/, and §,,, are similarly given as in equation (21) (replace o — 2o and
note the remark above), and all considerations from the previous section can be made
analogously. n, denotes the quantum number arising from expanding equation (25)
by means of the Hille-Hardy formula.

Az = B2y Qupp = 1/:.‘.vi.,z—— BE/m, these quantities must not be confused with those from

section 2.
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4. Discussion

In this letter I have used the path integration technique to solve two highly
asymmetrical two- and three-dimensional Coulomb-like potentials, which are
generated by a SO(2,1) dynamical algebra. The problems in question were only
separable in two- and three-dimensional parabolic coordinates, respectively. In both
cases a time transformation was needed to rcveal the underlying ‘radial harmonic-
oscillator’ structure of the two potentials. The bound-statc wavefunctions and the
energy spectrum were explicitly evaluated and compared with respect to limiting
cases.

Let us stress that the approach by the Kustaanhcimo-Stiefel transformation
(compare with [6, 8, 15]) by which the path integral for the hydrogen atom was solved
by Duru and Kicinert [15] can also be used to evaluate the path integral for the
potential V (=, y, z). However, the calculation presented here is much simpler than
by the Kustaanheimo-Stiefel transformation [22] because

(i) the use of. the Kustaanheimo-Stiefel transformation requires the introduction
of a fourth auxiliary variable x, which complicates the path integral calculation
considerably and makes it somewhat ambiguous; and

(ii) the transformation from three-dimecnsional Cartesian coordinates to three-
dimensional parabolic coordinates is, in fact, closely related to the Kustaanheimo-
Stiefel transformation such that after integrating out the auxiliary variable z, equation
(15) is recovered.

Note that the transformation from two-dimensional Cartesian coordinates o two-
dimensional parabolic coordinates in the case of V,(z,y,z) is, in fact, a two-
dimensional Kustaanheimo-Sticfe] transformation [15, 23].

Therefore 1 have added two further instructive examples to the list of exactly

solvable path integrals.
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